門脇@satoru_
Polarsとは
Pythonでデータ分析に使用される主なライブラリに pandas があります。Polarsはpandasと同様にデータフレームというデータ構造オブジェクトを提供するサードパーティライブラリです。特にpandasを意識して作られており、メインページに
Polarsのリポジトリや関連ドキュメントは以下を参照してください。
- Github: https://
github. com/ pola-rs/ polars - ユーザーガイド: https://
pola-rs. github. io/ polars-book/ user-guide/ - APIリファレンス: https://
pola-rs. github. io/ polars/ py-polars/ html/ reference/
Rust製でPythonバインディングを備えており、そのパフォーマンスについてはいくつかのベンチマークで高速なデータフレームライブラリの1つであることが示されています。
本記事では、Polarsとpandasのいくつかの機能を使用してその違いを見ていきます。
Polarsの特徴
まずはPolarsの特徴から見ていきます。下記は主にpandasを使用したことがある人を対象に挙げています。以降では、実際にPolarsを使ったコードを示しながら、これらの特徴についても触れていきます。
- Rust製で高速
- pandasで使用されるメソッドと同じものが多く、pandas経験者にやさしい
- 「Polars Expressions」
という各種メソッドをつなぎ合わせて、データフレームの操作を行うことをコンセプトとしている - インデックスがない
(pandasにはあるが、Polarsはインデックスがないことをメリットとしている) - 遅延評価
(Lazy Evaluation) ができる - pandasは先行評価
(Eager Evaluation) のみ
- pandasは先行評価
まずは使ってみよう
執筆時点での筆者が使用したPython、Polarsおよびpandasのバージョンは以下のとおりです。
- Python 3.
11. 1 - Polars 0.
16. 1 - pandas 1.
5.3
インストール
Polarsもpandasも pip
コマンドで簡単にインストールできます。
$ pip install polars $ pip install pandas
基本的な使い方
まずはデータフレームの作成から試してみます。pandasでは以下のように行います。
>>> import pandas as pd
>>> data = {
... "writer": ["kadowaki", "terada", "takanory", "ryu22e", "fukuda"],
... "value": [1, 2, 3, 4, 5],
... }
>>> pd_df = pd.DataFrame(data)
>>> pd_df
writer value
0 kadowaki 1
1 terada 2
2 takanory 3
3 ryu22e 4
4 fukuda 5
Polarsでも以下のようにpandasと同様に行えます。データフレームの表示はshapeとヘッダーに列の型を表示してくれています。
>>> import polars as pl
>>> pl_df = pl.DataFrame(data) # dataはpandasで使用したもの
>>> pl_df
shape: (5, 2)
┌──────────┬───────┐
│ writer ┆ value │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════╪═══════╡
│ kadowaki ┆ 1 │
│ terada ┆ 2 │
│ takanory ┆ 3 │
│ ryu22e ┆ 4 │
│ fukuda ┆ 5 │
└──────────┴───────┘
Polars Expressionsについて
データフレームが作成できたところで、Polarsの特徴である Polars Expressions について説明します。
Polars Expressionsとは、データフレームを操作するためのメソッド群です。Polarsでは高速化のためにメソッドの引数に式を使用して処理することをコンセプトとしており、メソッドを連結して記述することで複雑な処理も高速に解決することを強みとしています[1]。
具体的にどのようなことか、データフレームに列を追加する処理を例に説明します。
列の追加
列の追加は、pandasでは下記のように行えます。
>>> pd_df["tenx_value"] = pd_df["value"] * 10
>>> pd_df
writer value tenx_value
0 kadowaki 1 10
1 terada 2 20
2 takanory 3 30
3 ryu22e 4 40
4 fukuda 5 50
Polarsで同様に行おうとすると、以下のようにエラーが発生します。
>>> pl_df["tenx_value"] = pl_df["value"] * 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/envs/py311_1/python3.11/site-packages/polars/internals/dataframe/frame.py", line 1573, in __setitem__
raise TypeError(
TypeError: 'DataFrame' object does not support 'Series' assignment by index. Use 'DataFrame.with_columns'
同様に pl_
のように、リストでSeries
Polarsで列の追加を行うには、 with_
メソッドを使用します [2]。引数として polars.
メソッドで列名を指定し、列の別名割り当てに alias()
メソッドを使用します。
具体的なコードは以下のようになります。
>>> pl_df = pl_df.with_columns([(pl.col("value") * 10).alias("tenx_value")])
>>> pl_df
shape: (5, 3)
┌──────────┬───────┬────────────┐
│ writer ┆ value ┆ tenx_value │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞══════════╪═══════╪════════════╡
│ kadowaki ┆ 1 ┆ 10 │
│ terada ┆ 2 ┆ 20 │
│ takanory ┆ 3 ┆ 30 │
│ ryu22e ┆ 4 ┆ 40 │
│ fukuda ┆ 5 ┆ 50 │
└──────────┴───────┴────────────┘
pandasでよく使用される機能との比較
ここからは、より実践的なデータを使用しながらpandasとの違いを見ていきます。サンプルスクリプトでは 気象庁ホームページ で公開されている
CSVファイルの読み込み
最初にCSVファイルを読み込んでみます。import文のあとに表示オプションを指定していますが、具体的な説明は割愛します。
オプションパラメーターについては、 それぞれのAPIリファレンス
細かいオプションを使用せずシンプルに読み込むだけであれば、2つのコードは全く同じと言えます。それぞれの実行結果は以下のとおりです。
なお、どちらの出力結果もターミナルに表示された内容をコピー&ペーストしています。全角文字が含まれるため、表示上の位置ずれが発生していますが、実際のターミナルでは等幅フォントを使用することで位置ずれなく表示されるようです。以下に出力結果の参考画像を掲載します。
CSVの読み込み速度、メモリ使用量を比較
「PolarsはRust製だから速い」
- 計測方法
- Pythonのmemory-profiler を使用してメモリの使用量を確認
- timeコマンド を使用して処理にかかった時間を確認
- テストに使用するデータ
- 前述のCSVファイルの読み込みで使用した CSV を繰り返し連結して作成
- 合計: 2,631,680行
- ファイルサイズ: 約430MB
- 前述のCSVファイルの読み込みで使用した CSV を繰り返し連結して作成
計測に使用したスクリプトは以下のとおりです。
上記のコードをファイルに保存し、timeコマンドを使用して以下のように実行します。
$ time python3.11 pd_compare_readcsv.py $ time python3.11 pl_compare_readcsv.py
結果は以下のようにPolarsの方がメモリ使用量も、処理時間も圧倒的によい結果となりました。シンプルに速いというだけで嬉しくなりますね。
項目 | 結果: pandas | 結果: Polars |
---|---|---|
メモリ使用量 |
2163. |
1371. |
処理にかかった時間 |
27. |
5. |
ユーザーCPU時間 |
17. |
10. |
システムCPU時間 |
4. |
3. |
行や列の選択
行や列の選択について説明する前に、pandasとPolarsの大きな違いの1つである
pandasでは角括弧にインデックスを指定して行や列の選択を行うことがよくありますが、Polarsではそもそもインデックス自体が存在しません。pandas同様に角括弧を使用した選択も行うことができますが、この方法はアンチパターンとされており、将来使用できなくなる可能性があるとされています。
また、インデックスを使用しないことのメリットとして以下のようなことがあります。
- pandasで行や列をスライスしたときに見かける
「SettingWithCopyWarning」 が発生しない [3] - インデックスを使用しないことで遅延評価ができる
- インデックスは先行評価しかできない
- (遅延評価と先行評価については後述します)
- 複数列の操作をはじめ、多くの処理の並列化を実現している
- 角括弧を使用したインデックスの操作はシングルスレッドしかできない
下記のユーザーガイドでも、インデックスが有効なケースを除き、後述するメソッド群を使用することを推奨していますので読んでみてください。
前置きが長くなりましたが、具体的な方法を先述のpandasとPolarsのコードに追加してみていきます。
pandasではインデックスn番目からm番目を指定したスライスは以下のように行います。
print(pd_df.loc[375:379, ["都道府県", "地点", "24時間降水量 現在値(mm)"]])
Polarsでは、行方向と列方向にそれぞれのメソッドを使用して選択します。以下のコードは、列を選択するためにselect()
メソッドを使用し、指定した行位置から末尾の行を取得するためにhead()
メソッドとtail()
メソッドを組み合わせて使用しています。
また、pandasでは条件式を使用してデータを抽出することがあります。以下は列
print(pd_df.loc[(pd_df["都道府県"] == "山形県"), ["都道府県", "地点", "24時間降水量 現在値(mm)"]])
Polarsで同様に行うには、filter()
メソッドを使用します。
データフレームの結合、マージ
データフレームの結合やマージで使用されるメソッドは以下の表の通りです。Polarsではmerge()
メソッドがなく、マージと結合にはjoin()
メソッドが使用されます。
処理 | pandasで使用されるメソッド | Polars |
---|---|---|
連結 | pandas. |
polars. |
マージ | pandas. |
polars. |
結合 | pandas. |
polars. |
基本的な使い方が似ているため、ここではPolarsで行う方法についてのみ紹介します。
連結
上記のコードを実行すると以下の結果になります。
$ python3.11 pl_concat.py shape: (5, 2) ┌──────────┬───────┐ │ writer ┆ value │ │ --- ┆ --- │ │ str ┆ i64 │ ╞══════════╪═══════╡ │ kadowaki ┆ 1 │ │ terada ┆ 2 │ │ takanory ┆ 3 │ │ ryu22e ┆ 4 │ │ fukuda ┆ 5 │ └──────────┴───────┘
マージ、結合
Polarsでデータフレームのマージや結合を行うには、先述のとおりpolars.
を使用します。pandasのjoin()
メソッドはインデックスをもとにして3つ以上のデータフレームを連結できますが、Polarsではデータフレームの連結は2つまでという違いがあります。どちらかというと、pandasの merge()
メソッドと同等と考えるのがよさそうです。
結果は以下のようになります。
$ python3.11 pl_merge.py shape: (2, 3) ┌──────────┬───────┬─────────────┐ │ writer ┆ value ┆ value_right │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞══════════╪═══════╪═════════════╡ │ kadowaki ┆ 1 ┆ 7 │ │ ryu22e ┆ 4 ┆ 5 │ └──────────┴───────┴─────────────┘
また、これらの処理速度についてもpandasと比較してみたところ、以下のような結果となりました。連結やマージでも処理時間の差が見られます。
pandas処理時間 | Polars処理時間 |
---|---|
real: 0. |
real: 0. |
real: 0. |
real: 0. |
列に対する処理
pandasで行や列に対して処理を行いたい場合に apply()
メソッドが使用されます。Polarsにも同じ名前のメソッドがあり、pandasと同じように使用できます。
実行結果は以下になります。
$ python3.11 pl_apply.py shape: (5, 2) ┌───────┬──────────┐ │ value ┆ even_odd │ │ --- ┆ --- │ │ i64 ┆ str │ ╞═══════╪══════════╡ │ 1 ┆ Odd │ │ 2 ┆ Even │ │ 3 ┆ Odd │ │ 4 ┆ Even │ │ 5 ┆ Odd │ └───────┴──────────┘
日付やdict型への変換処理
文字列を日付型に変更する場合は、pandasではpandas.
メソッドを使用します。Polarsでは下記のように、.str.
というメソッドチェーンを使用して行います。pl.
の部分をpl.
のようにすれば、date型に変換されます。
また、pandasでデータフレームをdict型やJSONに変換する場合はpandas.
あるいはto_
メソッドを使用します。Polarsではdict型の場合はpolars.
メソッドを使用し、JSONに変換する場合はpolars.
メソッドを使用します。
ここでは、dict型に変換する方法を紹介します。
as_
オプションにTruepolars.
クラスのインスタンスとして出力されるため、シリーズで出力したくない場合はこのオプションをFalseにします。
遅延評価
遅延評価
pandasでは式を即時に実行する先行評価polars.
メソッドにより遅延評価用のデータフレームを使用することで、メモリを効率的に使用できます。
具体的に見ていきましょう。CSVを読み込むread_
メソッドについては先述の通りですが、これをLazyFrameにしてみます。方法は簡単でscan_
メソッドを使用するだけです。
>>> df = pl.scan_csv("./lazytest.csv")
>>> df
<polars.LazyFrame object at 0x7FA564C4D090>
また、LazyDataFrameに対してfilter()
メソッドなどを実行することもできますが、メソッドはすぐには実行されません。実行するには、データを取得するためのfetch()
かcollect()
メソッドを使用する必要があります。これらのメソッドが実行されたタイミングで初めて式が評価されます。
>>> df = df.select(pl.col(["都道府県", "地点"])).filter(pl.col("都道府県") == "山形県")
>>> df
<polars.LazyFrame object at 0x7F44D20C1610>
>>> df.fetch() # デフォルトでは先頭500行が取得される
shape: (56, 2)
┌────────────┬────────────────────────────┐
│ 都道府県 ┆ 地点 │
│ --- ┆ --- │
│ str ┆ str │
╞════════════╪════════════════════════════╡
│ 山形県 ┆ 飛島(トビシマ) │
│ 山形県 ┆ 酒田(サカタ) │
│ ... ┆ ... │
│ 山形県 ┆ 高峰(タカミネ) │
│ 山形県 ┆ 米沢(ヨネザワ) │
└────────────┴────────────────────────────┘
>>> df.collect()
shape: (56, 2)
...〈省略〉
読み込み済みのデータフレームに対しても遅延評価を行うことができます。こちらもやり方は簡単で lazy()
メソッドを使用してメソッドを繋ぐだけです。
# dfに対して.lazy().select()...のようにメソッドチェーンを行う
>>> df = df.lazy().select(pl.col(["都道府県", "地点"])).filter(pl.col("都道府県") == "山形県")
>>> df
<polars.LazyFrame object at 0x7F44D20DE450>
>>> df.collect()
shape: (56, 2)
...〈省略〉
遅延評価がこんなに簡単に使えるのは便利ですね。ファイル読み込みやクエリを先に宣言しておき、必要なタイミングで値を取得できるので処理の最適化が図れそうです。
まとめ
いかがでしたか?
しかし、Polarsは最初のリリースから1年未満という新しいライブラリで、pandasの機能をすべてカバーしているわけではありません。乗り換えには十分な評価を行うことをおすすめします。Polarsの今後にも期待しながら使いどころを探ってみてください!